NewsClick

NewsClick
  • English
  • राजनीति
  • अर्थव्यवस्था
  • विज्ञान
  • संस्कृति
  • भारत
  • अंतरराष्ट्रीय
  • हमारे लेख
  • हमारे वीडियो
search
menu

सदस्यता लें, समर्थन करें

image/svg+xml
  • सारे लेख
  • न्यूज़क्लिक लेख
  • सारे वीडियो
  • न्यूज़क्लिक वीडियो
  • राजनीति
  • अर्थव्यवस्था
  • विज्ञान
  • संस्कृति
  • भारत
  • अंतरराष्ट्रीय
  • अफ्रीका
  • लैटिन अमेरिका
  • फिलिस्तीन
  • नेपाल
  • पाकिस्तान
  • श्री लंका
  • अमेरिका
  • एशिया के बाकी
हमारे बारे में
हमसे संपर्क करें
सब्सक्राइब करें
हमारा अनुसरण करो Facebook - Newsclick Twitter - Newsclick RSS - Newsclick
close menu
विज्ञान
अंतरराष्ट्रीय
आर्टिफ़िशियल इंटेलीजेंस के ज़रिये हुई बीमारी से जुड़े जीन की पहचान
''हमने पहली बार 'डीप लर्निंग' तकनीक का इस्तेमाल बीमारियों से संबंधित जीन की पहचान के लिए किया है। यह बड़ी मात्रा की जानकारी के विश्लेषण के लिए शानदार तरीक़ा है।"
संदीपन तालुकदार
27 Feb 2020
Artificial Intelligence Used to Find Disease-related Genes
Image Courtesy: entrepreneur.com

आर्टफिशियल इंटेलीजेंस का इस्तेमाल अब बॉयोलॉजिकल रिसर्च में हो रहा है। रिसर्चर इसके ज़रिए बड़ी मात्रा के जीन डाटा (गुणसूत्र आकंड़ों) पैटर्न को दिखाने और कई प्रकार की बीमारियों से जुड़े जीन समूहों की खोज के लिए कर रहे हैं। नेचर में इससे संबंधित एक पेपर प्रकाशित हुआ है।

सोशल मीडिया प्लेटफॉर्म पर हमें साइट की तरफ़ से कुछ नए दोस्त बनाने के लिए नाम सुझाए जाते हैं। इन सुझावों (फ्रेंड्स सजेशन) का चुनाव संबंधित व्यक्ति से हमारे साझा दोस्तों की संख्या के हिसाब से होता है। इसी तरह वैज्ञानिकों ने बॉयोलॉजिकल नेटवर्क मैप बनाने की कोशिश की है। इसका आधार कई प्रकार के प्रोटीन और जीन्स का आपसी व्यवहार है। रिसर्चर ने इसके लिए ''आर्टिफ़िशियल न्यूरल नेटवर्क'' का इस्तेमाल किया। इन आर्टिफ़िशियल नेटवर्क की प्रायोगिक आंकड़ों के साथ प्रोग्रामिंग की गई।

मतलब, नेटवर्क में ऐसी प्रोग्रामिंग की गई, जिसके ज़रिये, ''प्रयोगों से हासिल होने वाले नतीजों'' की तरह के परिणाम पाए जा सकते हैं। जब इस तरह के नेटवर्क में डाटा डाला जाता है, तो यह उसे विश्लेषित कर बताता है कि डाटा से क्या समझा जा सकता है। जटिल आंकड़ों के विश्लेषण में आर्टिफिशियल न्यूरल नेटवर्क का शानदार काम रहा है। इसलिए इनका इस्तेमाल इमेज रिक्गनिशन (तस्वीर से पहचान) एप्लीकेशन में भी किया जाता है। लेकिन बॉयोलॉजिकल रिसर्च में फिलहाल इनका उपयोग सीमित है।

लिंकोपिंग यूनिवर्सिटी के फ़िज़िक्स, केमिस्ट्री एंड बॉयोलॉजी (IFM) में पोस्टडॉक्टोरल फैलो संजीव द्विवेदी कहते हैं, ''हमने पहली बार 'डीप लर्निंग' तकनीक का इस्तेमाल बीमारियों से संबंधित जीन की पहचान के लिए किया है। यह बड़ी मात्रा की जानकारी के विश्लेषण के लिए शानदार तरीक़ा है।'' संजीव इस पेपर के पहले लेखक भी हैं। 

लेकिन इससे जुड़ी एक बड़ी चुनौती भी है। पूरी प्रक्रिया में आर्टिफिशियल न्यूरल नेटवर्क कैसे किसी काम को पूरा करता है, इसे देख पाना मुमकिन नहीं है। यह एक ब्लैक बॉक्स की तरह है। संजीव ने आगे कहा, ''हम जानते हैं कि हमने कौन से आंकड़े डाले हैं और हमें नतीजे भी दिखते हैं। लेकिन इन नतीजों तक पहुंचने के लिए नेटवर्क ने कौन से क़दम उठाएँ, यह देख पाना हमारे लिए मुमकिन नहीं है। मौजूदा अध्ययन के रिसर्चर ने भी इस प्रक्रिया को समझने की कोशिश की है।''

IFM में सीनियर लेक्चरर और अध्ययन के करस्पोंडिंग लेखिका माइका गुस्ताफसन कहती हैं, ''जब हमने अपने न्यूरल नेटवर्क की जांच की, तो पाया कि पहली गुप्त परत में ज़्यादातर अलग-अलग प्रोटीन का आपसी व्यवहार संपन्न होता है। मॉडल की गहराई में तीसरे स्तर पर हमें अलग-अलग कोशिका समूह मिले। बॉयोलॉजिकल तौर पर अहम इस ग्रुपिंग का अपने-आप बनना बेहद दिलचस्प है। जबकि हमारे नेटवर्क में जीन से संबंधित जो आंकड़े डाले गए थे, वो अवर्गीकृत थे।''

इसके बाद रिसर्चर यह जानने का प्रयास किया कि जीन मॉडल, अलग-अलग जीन के बीमारियों से संबंध को ढूंढ पाने में कामयाब है या नहीं। उनका मॉडल सही साबित हुआ। मॉडल जरूरी पैटर्न को समझने में कामयाब रहा, जो बॉयोलॉजिकल सच्चाई से वास्ता रखते हैं।

माइक गुस्ताफसन आगे कहती हैं, ''हमें लगता है कि इस मामले में असली हासिल न्यूरल नेटवर्क को समझ पाना है। इससे हमें बॉयोलॉजिकल पृष्ठभूमियों के बारे में बहुत सारी नई बातें पता चल सकेंगी। हमें यह भी लगता है कि हमारी अपनाई प्रक्रियाओं से वह मॉडल बनता है जिसका आसानी से सामान्यीकरण हो सकता है और जिसे कई तरह की बॉयोलॉजिकल जानकारी के लिए इस्तेमाल किया जा सकता है।''

रिसर्चर का विश्वास है कि जीन पैटर्न पहचानने में AI के सफल इस्तेमाल से भविष्य में ''प्रेसिज़न मेडिसिन (सूक्ष्म पहुंच वाली दवाईयां)'' के विकास में मदद मिलेगी।

अंग्रेजी में लिखा मूल आलेख आप नीचे दिए गए लिंक पर क्लिक कर पढ़ सकते हैं।

Artificial Intelligence Used to Find Disease-related Genes

Artificial intelligence
Artificial Neural Network
Artificial Intelligence in Gene Expression

Related Stories

पृथ्वी दिवस: वैज्ञानिकों ने चिंता जताई

आर्टिफ़िशियल मेटल से बने 'नैनोवायर' में दिमाग़ की तरह गतिविधियां हो सकती हैं


बाकी खबरें

  • leather industry
    न्यूज़क्लिक टीम
    बंद होने की कगार पर खड़ा ताज नगरी का चमड़ा उद्योग
    10 Feb 2022
    आगरा का मशहूर चमड़ा उद्योग और उससे जुड़े कारीगर परेशान है। इनका कहना है कि सरकार इनकी तरफ ध्यान नही दे रही जिसकी वजह से पॉलिसी दर पॉलिसी इन्हें नुकसान पे नुक्सान हो रहा है।
  • Lakhimpur case
    न्यूज़क्लिक रिपोर्ट
    लखीमपुर कांड: मुख्य आरोपी और केंद्रीय मंत्री के बेटे आशीष मिश्रा को मिली ज़मानत
    10 Feb 2022
    केंद्रीय मंत्री के बेटे की ओर से पेश वकील ने अदालत से कहा था कि उनका मुवक्किल निर्दोष है और उसके खिलाफ कोई सबूत नहीं है कि उसने किसानों को कुचलने के लिए घटना में शामिल वाहन के चालक को उकसाया था।
  • uttarakhand
    मुकुंद झा
    उत्तराखंड चुनाव : टिहरी बांध से प्रभावित गांव आज भी कर रहे हैं न्याय की प्रतीक्षा!
    10 Feb 2022
    उत्तराखंड के टिहरी ज़िले में बने टिहरी बांध के लिए ज़मीन देने वाले ग्रामीण आज भी बदले में ज़मीन मिलने की आस लगाए बैठे हैं लेकिन उनकी सुध लेने वाला कोई नहीं है।
  •  Bangladesh
    पीपल्स डिस्पैच
    बांग्लादेश: सड़कों पर उतरे विश्वविद्यालयों के छात्र, पुलिस कार्रवाई के ख़िलाफ़ उपजा रोष
    10 Feb 2022
    बांग्लादेश में शाहजलाल विज्ञान और प्रौद्योगिकी विश्वविद्यालय के छात्रों के खिलाफ हुई पुलिस कार्रवाई के बाद, देश के कई विश्वविद्यालयों में छात्र एकजुटता की लहर दौड़ गई है। इन प्रदर्शनकारी छात्रों ने…
  • Newsletter
    ट्राईकोंटिनेंटल : सामाजिक शोध संस्थान
    वैश्विक निरक्षरता के स्थिर संकट के ख़िलाफ़ आवाज़ उठाएँ
    10 Feb 2022
    संयुक्त राष्ट्र ने नोट किया कि 'दुनिया भर में 150 करोड़ से अधिक छात्र और युवा कोविड-19 महामारी के कारण बंद स्कूल और विश्वविद्यालयों से प्रभावित हो रहे हैं या प्रभावित हुए हैं'; कम से कम 100 करोड़…
  • Load More
सब्सक्राइब करें
हमसे जुडे
हमारे बारे में
हमसे संपर्क करें

CC BY-NC-ND This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License