NewsClick

NewsClick
  • English
  • राजनीति
  • अर्थव्यवस्था
  • विज्ञान
  • संस्कृति
  • भारत
  • अंतरराष्ट्रीय
  • हमारे लेख
  • हमारे वीडियो
search
menu

सदस्यता लें, समर्थन करें

image/svg+xml
  • सारे लेख
  • न्यूज़क्लिक लेख
  • सारे वीडियो
  • न्यूज़क्लिक वीडियो
  • राजनीति
  • अर्थव्यवस्था
  • विज्ञान
  • संस्कृति
  • भारत
  • अंतरराष्ट्रीय
  • अफ्रीका
  • लैटिन अमेरिका
  • फिलिस्तीन
  • नेपाल
  • पाकिस्तान
  • श्री लंका
  • अमेरिका
  • एशिया के बाकी
हमारे बारे में
हमसे संपर्क करें
सब्सक्राइब करें
हमारा अनुसरण करो Facebook - Newsclick Twitter - Newsclick RSS - Newsclick
close menu
विज्ञान
अंतरराष्ट्रीय
आर्टिफ़िशियल इंटेलीजेंस के ज़रिये हुई बीमारी से जुड़े जीन की पहचान
''हमने पहली बार 'डीप लर्निंग' तकनीक का इस्तेमाल बीमारियों से संबंधित जीन की पहचान के लिए किया है। यह बड़ी मात्रा की जानकारी के विश्लेषण के लिए शानदार तरीक़ा है।"
संदीपन तालुकदार
27 Feb 2020
Artificial Intelligence Used to Find Disease-related Genes
Image Courtesy: entrepreneur.com

आर्टफिशियल इंटेलीजेंस का इस्तेमाल अब बॉयोलॉजिकल रिसर्च में हो रहा है। रिसर्चर इसके ज़रिए बड़ी मात्रा के जीन डाटा (गुणसूत्र आकंड़ों) पैटर्न को दिखाने और कई प्रकार की बीमारियों से जुड़े जीन समूहों की खोज के लिए कर रहे हैं। नेचर में इससे संबंधित एक पेपर प्रकाशित हुआ है।

सोशल मीडिया प्लेटफॉर्म पर हमें साइट की तरफ़ से कुछ नए दोस्त बनाने के लिए नाम सुझाए जाते हैं। इन सुझावों (फ्रेंड्स सजेशन) का चुनाव संबंधित व्यक्ति से हमारे साझा दोस्तों की संख्या के हिसाब से होता है। इसी तरह वैज्ञानिकों ने बॉयोलॉजिकल नेटवर्क मैप बनाने की कोशिश की है। इसका आधार कई प्रकार के प्रोटीन और जीन्स का आपसी व्यवहार है। रिसर्चर ने इसके लिए ''आर्टिफ़िशियल न्यूरल नेटवर्क'' का इस्तेमाल किया। इन आर्टिफ़िशियल नेटवर्क की प्रायोगिक आंकड़ों के साथ प्रोग्रामिंग की गई।

मतलब, नेटवर्क में ऐसी प्रोग्रामिंग की गई, जिसके ज़रिये, ''प्रयोगों से हासिल होने वाले नतीजों'' की तरह के परिणाम पाए जा सकते हैं। जब इस तरह के नेटवर्क में डाटा डाला जाता है, तो यह उसे विश्लेषित कर बताता है कि डाटा से क्या समझा जा सकता है। जटिल आंकड़ों के विश्लेषण में आर्टिफिशियल न्यूरल नेटवर्क का शानदार काम रहा है। इसलिए इनका इस्तेमाल इमेज रिक्गनिशन (तस्वीर से पहचान) एप्लीकेशन में भी किया जाता है। लेकिन बॉयोलॉजिकल रिसर्च में फिलहाल इनका उपयोग सीमित है।

लिंकोपिंग यूनिवर्सिटी के फ़िज़िक्स, केमिस्ट्री एंड बॉयोलॉजी (IFM) में पोस्टडॉक्टोरल फैलो संजीव द्विवेदी कहते हैं, ''हमने पहली बार 'डीप लर्निंग' तकनीक का इस्तेमाल बीमारियों से संबंधित जीन की पहचान के लिए किया है। यह बड़ी मात्रा की जानकारी के विश्लेषण के लिए शानदार तरीक़ा है।'' संजीव इस पेपर के पहले लेखक भी हैं। 

लेकिन इससे जुड़ी एक बड़ी चुनौती भी है। पूरी प्रक्रिया में आर्टिफिशियल न्यूरल नेटवर्क कैसे किसी काम को पूरा करता है, इसे देख पाना मुमकिन नहीं है। यह एक ब्लैक बॉक्स की तरह है। संजीव ने आगे कहा, ''हम जानते हैं कि हमने कौन से आंकड़े डाले हैं और हमें नतीजे भी दिखते हैं। लेकिन इन नतीजों तक पहुंचने के लिए नेटवर्क ने कौन से क़दम उठाएँ, यह देख पाना हमारे लिए मुमकिन नहीं है। मौजूदा अध्ययन के रिसर्चर ने भी इस प्रक्रिया को समझने की कोशिश की है।''

IFM में सीनियर लेक्चरर और अध्ययन के करस्पोंडिंग लेखिका माइका गुस्ताफसन कहती हैं, ''जब हमने अपने न्यूरल नेटवर्क की जांच की, तो पाया कि पहली गुप्त परत में ज़्यादातर अलग-अलग प्रोटीन का आपसी व्यवहार संपन्न होता है। मॉडल की गहराई में तीसरे स्तर पर हमें अलग-अलग कोशिका समूह मिले। बॉयोलॉजिकल तौर पर अहम इस ग्रुपिंग का अपने-आप बनना बेहद दिलचस्प है। जबकि हमारे नेटवर्क में जीन से संबंधित जो आंकड़े डाले गए थे, वो अवर्गीकृत थे।''

इसके बाद रिसर्चर यह जानने का प्रयास किया कि जीन मॉडल, अलग-अलग जीन के बीमारियों से संबंध को ढूंढ पाने में कामयाब है या नहीं। उनका मॉडल सही साबित हुआ। मॉडल जरूरी पैटर्न को समझने में कामयाब रहा, जो बॉयोलॉजिकल सच्चाई से वास्ता रखते हैं।

माइक गुस्ताफसन आगे कहती हैं, ''हमें लगता है कि इस मामले में असली हासिल न्यूरल नेटवर्क को समझ पाना है। इससे हमें बॉयोलॉजिकल पृष्ठभूमियों के बारे में बहुत सारी नई बातें पता चल सकेंगी। हमें यह भी लगता है कि हमारी अपनाई प्रक्रियाओं से वह मॉडल बनता है जिसका आसानी से सामान्यीकरण हो सकता है और जिसे कई तरह की बॉयोलॉजिकल जानकारी के लिए इस्तेमाल किया जा सकता है।''

रिसर्चर का विश्वास है कि जीन पैटर्न पहचानने में AI के सफल इस्तेमाल से भविष्य में ''प्रेसिज़न मेडिसिन (सूक्ष्म पहुंच वाली दवाईयां)'' के विकास में मदद मिलेगी।

अंग्रेजी में लिखा मूल आलेख आप नीचे दिए गए लिंक पर क्लिक कर पढ़ सकते हैं।

Artificial Intelligence Used to Find Disease-related Genes

Artificial intelligence
Artificial Neural Network
Artificial Intelligence in Gene Expression

Related Stories

पृथ्वी दिवस: वैज्ञानिकों ने चिंता जताई

आर्टिफ़िशियल मेटल से बने 'नैनोवायर' में दिमाग़ की तरह गतिविधियां हो सकती हैं


बाकी खबरें

  • cartoon
    सोनिया यादव
    यूपी चुनाव : क्या ग़ैर यादव ओबीसी वोट इस बार करेंगे बड़ा उलटफेर?
    14 Jan 2022
    2017 के विधानसभा चुनाव में बीजेपी के लगभग 39 प्रतिशत वोट शेयर में कुर्मी और कोइरी के साथ-साथ नॉन डॉमिनेंट ओबीसी ने भी भारी संख्या योगदान दिया था। हालांकि इस बार समाजवादी पार्टी की ग़ैर यादव ओबीसी वोट…
  • North Bengal
    डॉ सुखबिलास बर्मा
    उत्तर बंगाल के राजबंशियों पर खेली गई गंदी राजनीति
    14 Jan 2022
    भाजपा और टीएमसी दोनों ही राजबंशी के उच्च मध्यम वर्ग के एक तबके की भावनाओं को भुनाने की कोशिश कर रहे हैं, जो अक्सर राजनीतिक नेताओं द्वारा निभाए गए झांसों में विश्वास करते हैं। 
  • abhisar
    न्यूज़क्लिक टीम
    नफरती धर्म संसद पर कार्रवाई क्यों नहीं ?
    14 Jan 2022
    आज के एपिसोड में अभिसार बात कर रहे हैं कि जिस तरह धर्म संसद में नफरती बयान दिए गए और अल्पसंख्यकों को निशाना बनाया गया, सरकार ने अब तक इस मुद्दे पर चुप्पी क्यों साध रखी है ?
  • Michael Lobo Resignation
    राज कुमार
    गोवा चुनावः डेढ़ महीने में एक चौथाई विधायकों का इस्तीफ़ा
    14 Jan 2022
    गोवा में दिसंबर 2021 से लेकर अब तक 10 विधायक इस्तीफा देकर दल बदल कर चुके हैं। इस समय गोवा में क्या चुनावी हलचल है? क्या घटनाक्रम चल रहा है? आइये! नज़र डालते हैं।
  • south africa
    पवन कुलकर्णी
    श्रमिक संघों ने दक्षिण अफ्रीकी डेयरी दिग्गज पर पेट्रोल बम हमले करवाने और धमकाने के आरोप लगाये
    14 Jan 2022
    इन धमकियों और खतरों के बीच, क्लोवर में श्रमिकों की कार्यवाई को कर्मचारी एकजुटता के साथ-साथ नागरिक समाज की ओर से इसके बहिष्कार अभियान को मिलते बढ़ते समर्थन से और अधिक मजबूती प्राप्त हुई है। 
  • Load More
सब्सक्राइब करें
हमसे जुडे
हमारे बारे में
हमसे संपर्क करें

CC BY-NC-ND This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License